Механизм деформации в сопромате

Понятие о механизме образования деформаций

 

Как известно, металлы имеют кристаллическую структуру. При затвердевании металла в расплаве одновременно возникает много центров кристаллизации, вследствие чего рост каждого кристалла стеснен соседними. В результате технический металл состоит из большого числа кристаллов неправильной огранки, называемых кристаллитами или кристаллическими зернами. Относительно друг друга кристаллические зерна ориентированы самым различным образом. Вместе с тем в каждом из них атомы расположены совершенно определенно и образуют так называемую кристаллическую решетку, состоящую из повторяющихся одинаковых ячеек.

 

Атомы электрически нейтральны. Однако при достаточном их сближении возникает возможность отрыва валентного электрона одного атома положительно заряженным ядром другого, у этого — следующим и т. д. Таким образом, часть валентных электронов начинает перемещаться вокруг ядер всех взаимодействующих атомов. Эти электроны называются свободными, поскольку не связаны с определенными атомами. Металл можно представить себе как постройку из нейтральных атомов и ионов, находящихся в атмосфере электронного газа, который как бы стягивает ионы. Связь между атомами, осуществляемая электростатическими силами в результате взаимодействия положительных ионов и электронного газа, называется металлической. Поскольку эти атомы по своей природе одинаковы, то расположиться они должны на таких расстояниях один от другого и в таких точках пространства, где действующие на них силы притяжения и отталкивания были бы равны. В результате происходит закономерное расположение атомов, наблюдаемое в кристаллической решетке.

 

Кристаллическую решетку образуют воображаемые линии в плоскости, проходищие через точки пространства, в которых располагаются ионы металла. Более правильно эти точки определить как центры наиболее вероятного расположения ионов, так как те не остаются неподвижными, а колеблются около этих центров. Последние обычно называют узлами кристаллической решетки. Наиболее распространенными типами таких решеток металлов являются кубическая объемно, кубическая гранецентрированная и гексагональная плотноупакованная. В них атомы находятся в устойчивом положении равновесия и обладают минимальной потенциальной энергией.

 

При деформации металла расстояния между атомами под действием внешних сил изменяются по определенным направлениям, линии и плоскости, проходящие через атомы, искривляются, кристаллическая решетка искажается. Так как при этом равнодействующие сил притяжения и отталкивании между атомами уже не равны нулю, то в решетке будут действовать внутренние силы, стремящиеся вернуть атомы в положение равновесии. Зависимость между малыми смещениями атомов и силами взаимодействия с известной степенью приближения можно считать линейной. Суммарно это проявляется в линейной зависимости между смещениями точек тела и внешними силами, выражаемой законом Гука.


При устранении внешних сил атомы вновь занимают свои прежние места в кристаллической решетке, вследствие чего происходит упругое восстановление формы металлического тела. Так объясняется упругая деформация.

 

Если внешние силы увеличиваются, то возрастают и внутренние. Тогда в зернах металла происходит смещение одной части относительно другой, называемое скольжением. Исследованиями установлено, что оно происходит по плоскостям и направлениям, вдоль которых атомы располагаются наиболее плотно. Важной характеристикой этих плоскостей и направлений является величина сдвигающего напряжения τ, вызывающего скольжение.

 

Рассмотрим механизм образования пластической деформации в пределах одного кристалла с совершенной кристаллической решеткой.

Пусть в такой решетке верхний слой атомов смещается относительно нижнего по плоскости А — А. Если предположить, что в процессе сдвига кристаллическая решетка не искажается, т. е. в частях ее выше и ниже плоскости Л — А расстояния между атомами остаются неизменными, то можно прийти к выводу, что все атомы верхнего слоя смещаются относительно нижнего одновременно на одну и ту же величину.

 

Пока взаимное смещение u, возрастая, остается меньше половины расстояния между атомами (а/2), силы взаимодействия последних препятствуют сдвигу. Как только это смещение превысит расстояние а/2, силы взаимодействия начинают способствовать смещению решетки в новое устойчивое положение равновесия. Пластическая деформация произойдет в результате смещения части решетки на расстояния, кратные а. Наименьшая пластическая деформация соответствует смещению на а. В результате таких смещений каждый предыдущий атом занимает место последующего, все атомы оказываются на местах, присущих данной кристаллической решетке. Кристалл сохраняет свои свойства, меняя лишь конфигурацию. Точные теоретические расчеты, основанные на подобной картине деформации, позволяют определить максимальные касательные напряжения, которые должны возникнуть в кристалле, чтобы появилась пластическая деформация. В действительности она начинает образовываться при напряжениях, в сотни раз меньших, чем дает теория. Такое расхождение между теоретическим и действительным сопротивлением сдвигу в кристаллах объясняется тем, что переход атомов из одного положения в другое совершается не одновременно, а во времени, подобно волне, с местными искажениями решетки, называемыми дислокациями.

 

Отметим, что реальные кристаллы либо с самого своего возникновения содержат дислокации, либо имеют какие-то иные несовершенства и в них дислокации образуются уже при низких напряжениях сдвига. Поэтому-то при низких напряжениях дислокации движутся через кристаллическую решетку, отчего и происходит пластическая деформация кристалла. После того как дислокация выйдет наружу кристалла, форма его изменится, но структура останется прежней. Возникают новые дислокации и движутся через кристалл. Суммарно результат этих скольжений в зернах проявляется в виде пластической деформации образца.

 

Перемещение дислокации через кристалл можно уподобить движению складки по ковру. Когда складка пройдет через весь ковер, он будет несколько сдвинут. Сила, необходимая для перемещения складки, существенно меньше той, которая нужна, чтобы сдвинуть весь ковер целиком.

 

Так теория дислокаций объясняет механизм образования пластических деформаций и расхождение между теоретической и действительной прочностью металлов.

 

При массовой пластической деформации дислокации, движущиеся в кристаллической решетке по пересекающимся плоскостям, образуют неподвижные пороги, поэтому перемещение дислокаций тормозится. Суммарно это проявляется в виде упрочнения металла после определенной пластической деформации.

 

Появление сдвигов в кристаллической решетке, приводящих к пластической деформации, не исключает искажений кристаллической решетки, соответствующих упругим деформациям. Это подтверждается тем, что при любой стадии деформации образца, вплоть до разрыва, полная деформация состоит из упругой и пластической.

 

Повышение сопротивления движению дислокаций приводит к увеличению прочности металла. Этого достигают введением в металлы специальных примесей, термической обработкой, наклепом и т. п. Уже сделаны первые шаги по созданию металлов, не имеющих дефектов кристаллической решетки. Получены бездислокационные нитевидные металлические кристаллы («усы»), обладающие очень высокой прочностью, приближающейся к теоретической.

 

 

 

Rambler's Top100